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SUMMARY /9_0,\?

The excitation of the dominant T™ surface wave on a cylindrical reactive
surface is discussed. The surface wave launcher consists of a perfectly
conducting, infinitely thin cylindrical surface of radius b coaxial with a
cylindrical reactive surface of a radius a where b > a, The reactive
surface extends from -o < z < w, and the perfectly conducting surface extends
from -» < z £ 0. The incident field is the dominant TM mode in the coaxial
portion of the structure propagating in the positive z-direction.

Numerical results are obtained for the reflected field, the surface
wave field, and the radiation field. These results are then compared with
the results that use two approximate aperture distributions.

This method of excitetion was very efficient over a large range of
frequencies and over wide variations in the surface reactance. n JTH08

INTRODUCTION

The problem of exciting surface waves on various types of structures has
been treated to s great extent in the literature.l A general requirement
for a good surface wave launcher is that it have a high launching efficiency
over a large fregquency bandwidth. Brcwn2 has shown that the launching ef-
ficiency of a finlte-sized leuncher can be made arbitrarily close to 100 per-

cent. This large efficiency can be realized, however, only at the expense of

frequency bandwidth.

*Member of IEEE.
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The majority of numeriesl data presently avaeilsble on lmsunchers is for
the class of launchers that are infinitesimsl in some dimension., To this
cless belong the launchers In the form of short electric and magnetic current
elements, line sources, current loops, slots, etc. Each of these sources caﬁ
be characterized by a delta function in one or more of the coordinates. The
case of the finite-sized aperture can be handled, at least in theory, by
a superposition of infinitesimal sourcess In practice, it is ususlly pro-
hibitive to caxry out thils superposition, first, because of the complexity
involved in the calculation and, second, because the aperture distribution
mey be unknown. In this case, the aperture distribution is often approximated
by a "chopped" surface wave distribution; that is, the fields in the aperture
plane sre assumed to have the same form as the surface wave fields within the
gperture and are assumed to vanish everywhere outside of the aperture.
Another often used approximation method 1s Kirchhoff's approximstion. In
this method the aperture field is assumed to be of the same form as the un-
perturbed incident field. For either case the surface wave amplitude can be
easily computed by an integration over the aperture plane since the surface
wave modes and the radiation field are or‘thogor:.zs.l.3

The purpose of this paper is to ocbtain rigorously the launching charac-
teristics, radiation pattern, and frequency bandwidth for a finite~sized
launeher, These results will then be compared wilth the results for the
"chopped" surface wave distribution and with the results using Kirchhoff's
approximation.

The structure to be considered 1s shown in figure 1. The structure con-

sists of a reactive cylindrical surface of radius a and of infinite extent
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in the z~-direction. Coaxlal with this cylinder is an infinitely thin, per-
fectly conducting surface of radius b for 2z £ O. The surface wave field,
rediation field, and the reflected field will be computed when the incident
field is the dominant T™ mode in the region a <r <b, z < 0, propagating
to the right.
FORMUTATION OF THE PROBLEM

This problem falls into the class of two-part boundary value problems
which can be handled by the Wiener-Hopf technigue, The analysis will be
carried out for a range in the parameters of the structure where only the
dominent ™ mode propagetes in the region a <r <b, z < 0. In this case
all of the field components can be derived from a scalar function (r,z)
because of the circular symmetry of the structure. The function v(r,z)
is the 6 component of the magnetic field.

In the region a <r <b, z < 0, ¥(r,z) can be expanded in a series

of the proper eigenfunctions:

v(r,z) = Ag [:Jl( -JPOT)H?)(-JPOb) - JO('jPOb)HE('JPOr‘)J o172

' Z A:l [Jl(Pnr)Hg(pnb) - JO(I’nb)Hi(-'pnf")]‘;Hrllz (1)

n=1
where the A, are complex constants. The eigenvalues py, and the propaga-
tion constants 71, satisfy the equations
To(-dpgb)EG(-dpgr) = Jo(~dpgR)EG(~dpch)
31 (-3p08)E3(~3pgk) - Jo(-dpgP)E(-dpga)

Jpoa - aa



No(pyb)do(Pe2) - Jo(pyb)No(pye)
Pn® T (o 0N, (P &) - Bo(pb)31(poa) - 2 =

a = sz/Zo

AR

rﬁ = pg - kz, n>1

where k is the free-space wave number, X, is the surface reactance, and

B
Zp 1s the characteristic impedance of free space. The eigenfunctions in
(1a) correspond to the T,, modes in the coaxial portion of the structure.
The dominant TMyoy mode will degenerate into a TEM mode as the surface
reactance vaenishes.

In the region z > 0, r > &, y(r,z) will consisgt of a radiation field

end a surface wave mode of the form

B (- Jhgr)e~I80% (1p)
where
H3(-Jhga)
Jhop —= -
o B2 (-Jhga)
end
B - uf + &

The surface wave mode (1b) is the Ty mode or the Goubau wave. Only one
subscript is necessary in denoting the surface wave modes since all of the
modes have an evanescent character in the radial direction. A time varia-
tion for the field components of e hag been assumed.

It is convenient to decompose the total field wi(r,z) into two parts:

an incident field w;(r,z) and e scattered field yg(r,z) where
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W(I‘,Z) = “’i(ryz) + ‘!’s(r,Z)
The incident field is the TMpp mode and will exist by definition for

a<r<b and a8ll z.

. \)
Vie,2) = 52 (3 (-dogr) B ~tgb) - To(-2g)E(-3mem)) e IO (2)

Since the incident field does not satisfy the proper boundary conditions for
z > 0, the scattered field will be expected to contain & term of the same

form es ¥4(r,z) for z >0 to nullify this improper solution. The scat-

tered fleld sastisfies the following conditions:

BZWS 1 a‘l's a2"’5 2 1

arz + T or * 822 + (k = ;E) WS =0 (3)
19
T a7 (r¥g) +a¥, =0, r=a, all z (4)

19 (

S5 (%) =0, r=Db, z<0 (5)
¥s(b*,2) - ¥g(d7,2) = e 905, 250 (6)
12 ry)| i mw| -0 (7)

r<bt r=b~

Equations (4) and (5) are a statement of the boundary conditions on the reac-
tive surface and on the perfectly conducting surface, respectively. Equa-
tion (6) requires the scattered field to be discontinuous at r =D by an
amount equal to the discontinuity in the incident field, which thus makes

the total field continuous. Equation (7) is equivalent to meking the axial
electric field continuous at r = b,

The solution for the scattered field can be formulated in terms of the
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bilateral Iaplace transformation of (3) along with the associated boundsary

conditions. Iet

o(r,w) = (P+(r:“)) + 97 (r,w)

where

o
<D+(r,a>)’§f Vg(r,z)e ™ az
0

0
9™ (r,w) Ef ¥ (r,2)e™" az

In order to make ¢*(r,w) and ¢ (r,») enalytic funections of o in a com-

and

mon region in the w-plane, the propegation constants 7o and Bp 8are
made complex. Iet Jrg = Jry+ 7y and JBg = JBh + By where TY, Ty, BY,
and [36 gre real. In the final solution Ta and 138 will be set equal

to zero. Teking the transforms of (3), (4), and (5) gives

8_29 % (032+k2-;-12-)q>=0 (8)
12 (xg) tap=0, r== (9)
1L (rg) =0, r=bd . (10)

where @ has been restricted to the range -‘r’é < Rew < 7‘6. The solution

to (8) that satisfies boundery condition (9) is
[eB(na) + amB(a)] 3100) - [Mp(he) + agy(he)) B ()
(AEB(ra) + aEE(M)) 3 (M) - (Mp(he) + oty (ha)] BE (%)

CP(I‘,LD) = cp('b",a))

(11)



for
e<r<b
and
~ B (Ar)
o(r,0) = o(d*,) :l?(‘nf)- (12)

for r >b where A= A2 ; g2 The branch of A where Im A <O must

‘be selected to satisfy the rediation condition. |
The unknown coefficients o¢(b~,m) and o(b*,w) in (11) and (12) can

be determined by the discontinuity conditions on the scattered field at

r =Db. This cen easily be accomplished by introducing the functions J¥(b,m)

and J (b.») where

. -2
[urs(b",z) - ws(b.-,z)]e az
0

I (b,m)
and

3" (b,w)

]

| [ws(b*‘,z) - vs(b',z)] e ™ az

J+('b,a>) can be calculated at once by using (6).

1

+
J (ayb) = e T Iy

Rew > - ‘r'(') (13)

From the definitions of J+(’b,a>) end J (b,w) and (13) it is apparent that

1

1
o+ JTg (14)

cP(b+:(D) - 9(b7,w) = I (b,m) +

Using boundary condition (10) gives

22 () =12 (x9") =9t (b,0) far r =D
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The coefficients o(b~,w) and ¢(d*,w) can now be expressed in terms of
ot '('b,a)) and known functions of w by performing the indicated differentia-
tions with respect to r on (11) and (12). Substituting these results

into (14) glves

7' (3,0)F(@) = I7(b,0) + i (15)

where F(®) is a known function of @ The function F(w) is written ex-
plicitly in the appendix along with its Wiener-Hopf factorization.
It is convenient to write F(o) as a product of functions

._ F(@) = K(@)L(@)M()N(o)(? + 7§) ™ (16)
vhere K(o), L{(w), M(ow), and N(ew) are defined in the eppendix. The function
F(m) can be put into the form

F() = (o) /F~(a)
by a Wiener-Hopf factorization where F'(w) is anslytic and nonzero for
Rew > - T, and F~(o) is analytic and nonzero for Rem < 1"6. In the
notation of (18), F'(w) and F- (o) cen be expressed es
FH@) = pla)K*(@)F* ()M (o) K (o) (@ + J1g) ™t

F (@) = p(0)k™ (o)L (o) ()N (@) (@ ~ JT0)
where p(w) is analytic everywhere in the finite m-plane, The function
p(w) must be selected to give FH ) and F~(o) algebraic behavior rather
than exponential behavior at infinity. It can be shown that the asymptotic
farme of F'(w) and F-(o) are
FH )

()

O(m-l/z) as - o
o(w/2) 88 @ -w

I

(17)

Equation (15) can now be rewritten in the form



F(~drg) F (o) = F(=~Jrp)
o+ Jr, T o+,

Fm)ot (b,m) - + F(0)d™(byw)  (18)

The left side of (18) is analytic for Rem > - Ty end the right side .is
analytic for Rew < ¥« The equality in (18) holde only in the region
-'r'(') < Rem < r’o‘. Figure 2 shows the regions in the complex m-plane where
the various trensforms are analytic.

The solution for the scattered field is not unique unless the edge
conditions are specified et r =bd, z = 0.4 These conditions require the
axial component of the electric field to be of the order z"l/ Z gt the
edge, which makes the trensform of the electric field (i.e., ¢ (bym)) of

the order a)'l/ 2

as @+~ =, A similer condition exists for the asymptotic
form of the current at the edge. This condition requires J (b,w») to be of
the order ol as o - - w». Substituting these resulte into (18) showe
that each side of (18) approaches zero as o goes to infinity in the
proper helf plene. Thus, on applying Liocuville's theorem, (18) can be
equated to zero. Setting the left side equal to zero gives

F(=d1p)
F (o) (0 + J70)

ot (b,) = (19)

Note that the proper edge conditions are satisfied in (19).
EVALUATTION OF SCATTERED FIELDS
The fimction ¢%'(b,w) in (19) can be computed in terms of o(b~,m)

from (11) or in terms of o(b*,m) from (12). Using (11) gives

_ F(=J7p)
(o) (@ + I7p)

(20)



- 10 -
The scattered field, evaluated at r = b, can now be found by inverting (20).
#’ (b=y2) = == o(b~,w)e® am
5 2 zﬂd a b4

The inversion contour C must be in the region -r'c') < Rew < T'c') as shown
in figure 3 and be on the proper sheet of the Riemann surface. The branch
cuts were selected as straight lines extending radially from the branch
points.

For z < 0 the contour can be closed in the right half a-plane with =a
semicircle of infinite radius, which is deformed around the branch cut. The
contribution to the integral along the semicircle and branch cut is zero.
Thus, ¥5(b ,z) cen be expressed in terms of the residues of o¢(b~,w) for
z < 0. "The poles of o(bd ,m) are due to the zeros of F (w) for

Rew > - TR. In the notation of (16) all of the zeros of F (m) are contained

o°
in the term N (o)(® - JTy). The zero at o = Jry corresponds to the
dominant TMy, mode, and the zeros at w = 1,; correspond to the higher
order TM,;, modes. For z << 0, r =b", the scattered field will consist
of only the ']MOO reflected mode since the ‘]ZMon (n > 1) modes are

evanescent. Thus,

F(-31)e 107

e R o T 17 6 T 17 Vi ) (21)

for z << 0. The radial dependence of the scattered field for a <r <D,
z < 0, hes already been determined in (la).
The scattered field for 'z > 0 can be found by closing the contour
with a semicircle of infinite radius in the left half w-planes Agein, the con-

tour must be deformed around the branch cut. For z > 2(b - a) the contribu-



tion to the integral along the semicircle is zero. Therefore, the scattered
field can be evalusted in terms of the residues of o(b ,®) and the branch
cut integral. The function o(b~,w) has two poles for Rew < Ty- The
surface wave pole is located at o = -JBp, and a second pole, located at

o = -JTO, gives rise to & field that cancels the incident field for z > O.
In the notation of (16) the surface wave pole corresponds to a zero of
M*(w), and the pole at ® = -JY, &ppears explicitly in (b ,»). Evaluat-

ing the residues gives

-3Byz
JEE (=gngb)F~(~3rg)e = ©

¥5(b,2) = —

po(2 + an - 222 HB(~gngh)p(-380)K* (<80 T*(-3BIN"(~3B0)F*(~3o)
-em‘ﬁbz + Branch cut integrsl (22)

for z > 2(b - 8&). The first term on the right in (22) corresponds to the

™, surface wave. The radlal dependence of the surface wave mode has been

determined in (1b). The second term cancels the incident field for z > 0

since V¥4(b7,z) = e-JTOZ'

The scattered field for r > Db can be found by evaluating ot'(b,w)

from (12) and substituting the result into (19). The result is

R ., TE
2 | AT+ o B(RE + aF 1) FH (o) (o + I7,)
c

for r > b. The asymptotic form of the radiated field can be determined

 (23)

by saddle-point integration, This Integration can be easily carried out
by a sulteble change in the varisble of integration and a transformation of

r and z into spherical coordinatess Let o = ~Jk sin v where
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vy=0+Jy, r=pecos 9, and 2z = p ein ¢ (see fig. 1). With these changes
(23) becomes

v (or0) 1 H?_(kp cos @ cos v)F'(-JrO)é-Jkp sin @ sin-v
siPr® = " 73 H4(kb cos v)F'(-Jk sin v)(yp - k sin v)

dv (24)
cl

If the contour C' does not pass through a point where cos v = 0, and if
cos ¢ # 0, then for sufficiently large kp the Hankel funetion

le_(kp cos @ cos v), in (24) can be replaced by its asymptotic form

- 3
H?_(kp COS @ COBE V) = L 2 e™d (kp CoB @ cO8 v - 711[')
Vkpn cos ¢ cos v

where terms of the order (kp)-s/ 2  gnd lower have been neglected. The scat-
tered field is now given by

zl/zF-(_Jro)e—J (kp cos (v=0p) = %5) ay
Hg(k‘b cos v)FH(-Jk sin v)(rg - k sin v)(kpr cos @ c:oxs:-_i/)jj5

1
\l’s(p}(p) == 2x]

C
(25)

for (kp) >> 1. The steepest descent contour C!' (fig. 4) passes through the
saddle point v = ¢ and , in general, satisfies the equation
Re[k cos(v - 9)] = Rek. As the cbservation angle ¢ approaches x/2 the
contour C! will cross the surface wave pole. For this range of ¢ the
surface wave must be included in the expression for the total scattered field.
The integral in (25) can be evaluated by expanding the exponent in a Taylor

series sbout v = @ and retaining only the first two terms. The result is

F(-10) e (kpt/2) (26)

‘l’ ) =
5(p9) wFH(-jk sin cp)Hg(k‘b cos @){(yYo - k sin 9)(kp cos @)
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for (kp) >> 1. Tt should be noted at this point that the function vg(r,z)
is the 6 component of the megnetic field in cylindrical coordinates, When
the change was made to spherical coordinates, the form of the scattered
field did not have to be modified since the & components of a vector ex-

pressed in cylindricel and spherical coordinates are identical.
The radiated field as expressed in (26) is of the genersl form

-Jkp
¥ (059) = 6(0) (27)

If more terms were retained in the asymptotic expansion of the Hankel func-
tion and in the expansion of the exponent in (25), ws(p,q)) would contain
terms of the order (kp)-3/ 2 and lower, The additional terms would give a
better approximation for the radimted field, but they would not contribute
eny net radiated power. The flow of energy in the structure can be deter-
mined entirely from the amplitudes of the modes computed in (21) and (22)
and from the radiated field as given in (26).

RESULTS
The amplitudes of the various modes were computed on an IBM 7094. Some

typical results are shown in figures 5 to 8. The ratios of surface wave
power, reflected power, and radisted power to incident power are shown as
functions of kd where d =b - a. The range of kd 1s restricted so

that only the MMy mode will propagate in the coaxial portion of the struc-
ture. The results show that this structure is very efficient in launching
surface waves even when the surface reactance is quite low. Tt is also
broad banded as evidenced by the small reflected power over & large range

of kd.

The curves for the radlation pattern have bheen normalized by setting
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‘the meximum value of the pover density in the forward direction equal to 1.
The radiation field approaches zero as the cbservation angle ¢ approaches
n/2, at least to the first order in (kp)-l. This phenomenon is referred to
by Kane as the Karp-Karal lemma. In the back direction, the radiation
pattern becomes singular as ¢ approaches -x/2. It can be shown that

G(p), defined in (27), is of the form

(o) =~ 7= ik‘b -
BoulZ G- ‘P)]

for ln/Z + w[ << 1. The same type of singularity is also present in the

radiation pattern of a circular wave guide when the incident field is the
T™o1 mode.® The radiation patterns for other values of surface reactance
are quite similar to that shown in figure 8. As the surface reactance is
increased the beam width becomes slightly smaller for g fixed value of kd.
Figure 9 shows the launching efficiency vs. kd for the structure,
Exact results are presented along with the results using Kirchhoff's gpproxi-
mation and the "chopped" surface wave distribution. The approximation |
techniques give quite accurate results for kd > 1. The values of kd when
the approximetions fail also gjve & large reflected power as shown in fig-
ure 5S¢ The launcker would not be useful in this range of kd unless some
impedance matching technique were employed. The launching characteristics,
both exact and approximate, for other values of surface reactence have the
same general behavior as those showm in figure 9. In all cases, the
"chopped" surface wave distribution was found to be a better approximation

than Kirchoff's approximation.
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APPENDIX
The function F(w) is expressed, for convenience, as the product of
funections
F(w) = K(w)L(w)M(0)N(w) (o? + ¥§) ™"

where

55

K(w) = %

=

-(m

L (w) = H%)O\a)
L (w)  HR(M)

Ka) =

o) =) Ex+aﬁi(h)

fN(co) =

3
B

(w2 + 15)

A (E5(n) To(3) - BE(M)To(ha)] + M (BE(ha) (%) - EE(2)Iy(e)]
and
A= 2 4 w?

It is not necessary to compute both K'(w) and K (w) since if, for
example, K~(w) is known, then K'(w) can be obtained from its definition
Kt(w) = K(o)k~(w). X*(w) can also be obtained from the relation
K+(ia>)K'(T-a)) =1 since XK(w) is an even function of w. The same is true
for I{(w), M(w), and N(w) since they are all even functions of @. K ()

can easily be determined by inspection giving

K~(@) = (nb/23)1/%(e - 3%)1/2
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The functions L (w) and M (w) can be found by applying Cauchy's integral
formula to a strip in the complex w-plane. The functions L (w) and M (o)
can not be expressed in terms of elementary functions, but they can be

written in the integral forms:6

S e H3(-Jka ~/xZ - L)E3(Jkb +/x2 - 1)

-

in ;
%% - 1)E(-gkb +/xE - 1)
—y (af + k2) Hh(Jka /%
L (o) = exp = P.V. Z - D) (- a))’ dx
l “ A
L J

w

M (@) = M(0) exp &@EJE;LQE%}“
0

[0V} o
X (w*(x) - m=(x))ax
-3z BV, TEY: ds
0 1

where P.V. denotes the principal value of the integral and

. zev)-1 | ) .
mt(x)= F.X_ai]. [ig - aa .ili(...g_).] . [1 tos + p;_a Hi(?ﬁ) ' an H]_(‘E)} ]

*E H2(¥¢)

£ = Jka /%2 ~ 1
The function N(w) can be factored by expressing it as an infinite product.
This is poseible since N(®) is an even function of m and has

singufarities in the form of simple poles.’ The result is

N (o) =,\FE- ’[:r [.Tn - e+ %i;?
onxa n=1 Py

The function p(w) must be selected to give F'(o) and F (o) algebraic

behavior es |o] - w. The proper p(o) is
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- oy Jod  ad kd) aod  ,ywd
p(w) = exp [z:a:’” 2 +:tln(23t) * ]

where 71 is Euler's constant and

| V- DB VE T e
Pl Z e V2 S DR Y - D) o
X2 -1
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Figure 1. - Surface wave structure.
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Figure 2. - Regions in complex w-plane where transforms are

analytic.
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Figure 3. - The Inversion contour in the complex w-plane.
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Figure 4. - The steepest descent contour in the complex

v-plane.
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INCIDENT POWER
IN REFLECTED WAVE, %
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Figure 5. - Percentage of incident power coupled to the sur-

face wave vs. kd for constant values of surface reactance
Xg; b/a, 2.3.
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Figure 6. - Percentage of incident power coupled tc the re-
flected wave vs. kd for constant values of surface re-
actance Xg; b/a, 2.3.
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RELATIVE POWER DENSITY
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IN RADIATION FIELD, %
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Figure 7. - Percentage of incident power coupled to the ra-

diated wave vs. kd for constant values of surface re-
actance Xg; b/a, 2.3.

Figure 8. - The radiation pattern; Xg, 1.0 2g; b/a, 2.3.
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LAUNCHING EFFICIENCY, %

100

80

60

40

20

—!"CHOPPED" SURFACE
WAVE DISTRIBUTION

KIRCHHOFF'S APPROXIMATION

| | I | J

.5 1.0 1.5 2.0 2.5
kd

Flgure 9. - Launching efficiency vs. kd; Xgs 0.5;
b/a, 2.3.
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